Skip to content

Shape-Shifters: These 3D Printed Smart Materials Can Jump, Crawl, And Play Catch

Researchers at MIT have figured out a way to 3D print shape-changing soft materials. To achieve this, mechanical engineer Xuanhe Zhao and his colleagues developed a 3D-printable ink infused with magnetic micro-particles. These micro-particles, which were made of a neodymium-iron-boron alloy, were combined with silica nanoparticles and embedded in silicone rubber for flexibility.

The researchers then designed a 3D printer that incorporated an electromagnet. By moving the electromagnet during printing, they could continuously control the orientation of the magnetic particles.

The resulting 3D structures are able to adopt a wide variety of intricate architectures that respond to magnetic fields instantaneously and in highly specialized ways. These little wonders are able to wrinkle, roll, jump and even catch a ball.

Moreover, because the materials respond to a magnetic field rather than direct contact, it means they can be remotely controlled.

“We think in biomedicine this technique will find promising applications,” Zhao told MIT News. “For example, we could put a structure around a blood vessel to control the pumping of blood, or use a magnet to guide a device through the GI tract to take images, extract tissue samples, clear a blockage, or deliver certain drugs to a specific location. You can design, simulate, and then just print to achieve various functions.”